Appendix 2: Hardware Description Language

Intelligence is the faculty of making artificial objects, especially tools to make tools.
— Henry Bergson (1859-1941)

This appendix has two main parts. Sections 1-5 describe the HDL language used in the book,
and in the projects. Section 6, named HDL Survival Guide, provides a set of essential tips for
completing the hardware projects successfully.

A Hardware Description Language (HDL) is a formalism for defining chips: objects
whose interfaces consist of input and output pins that carry binary signals, and whose
implementations are connected arrangements of other, lower-level, chips. This appendix
describes the HDL that we use in Nand to Tetris. Chapter 1 (in particular section 1.3)

provides essential background which is a prerequisite to this appendix.

A2.1 HDL basics
The HDL used in Nand to Tetris is a simple language, and the best way to learn it is to play
with HDL programs, using the supplied hardware simulator. We recommend to start

experimenting as soon as you can, beginning with the following example.

Example: Suppose we have to check if three 1-bit variables a, b, ¢ have the same value. One
way to check this 3-way equality is to evaluate the Boolean function =((a # b) V (b # ¢)).
Noting that the binary operator not-equal can be realized using a Xor gate, we can implement

this function using the HDL program shown in figure A2.1.

/** If the three given bits are equal, sets out to 1; else sets out to 0. */
. CHIP Eg3 {
interface IN a, b, c;
OUT out;
PARTS:
Xor(a=a, b=b, out=neql); // Xor(a,b) - neql
. : Xor(a=b, b=c, out=neq2); /I Xor(b,c) - neq2
1 ) )
implementation Or (a=neql, b=neq2, out=outOr); // Or(neql,neq2) - outOr
Not(in=outOr, out=out); // Not(outOr) » out
}

Figure A2.1: HDL Program example.

The Eq3.hd1 implementation uses four chip-parts: two Xor gates, one Or gate, and one Not
gate. In order to realize the logic expressed by =((a # b) V (b # ¢)), the HDL programmer

connects the chip-parts by creating, and naming, three internal pins: neql, neq2, and outoOr.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2



Unlike internal pins, which can be created and named at will, the HDL programmer
has no control over the names of the input and output pins. These are normally supplied by
the chips' architects, and documented in given API's. For example, in Nand to Tetris, we
provide stub files for all the chips that you have to implement. Each stub file contains the chip
interface, with a missing implementation. The contract is as follows: you are allowed to do
whatever you want under the PARTS statement; you are not allowed to change anything above
the PARTS statement.

In the Eq3 example, it so happens that the first two inputs of the Eq3 chip and the two
inputs of the Xor and or chip-parts have the same names (a and b). Likewise, the output of the
Eq3 chip and that of the Not chip-part happen to have the same name (out). This leads to
bindings like a=a, b=b, and out=out. Such bindings may look peculiar, but they occur
frequently in HDL programs, and one simply gets used to them. Later in the appendix we'll
give a simple rule that clarifies the meaning of these bindings.

Importantly, the programmer need not worry about how chip-parts are implemented.
The chip-parts are used like black box abstractions, allowing the programmer to focus only on
how to arrange them judiciously, in order to realize the chip function. Thanks to this
modularity, HDL programs can be kept short, readable, and amenable to unit-testing.

HDL-based chips like Eq3.hd1 can be tested by a computer program called hardware
simulator. When we instruct the simulator to evaluate a given chip, the simulator evaluates all
the chip-parts specified in its PARTS section. This, in turn, requires evaluating their lower-level
chip-parts, and so on. This recursive descent can result in a huge hierarchy of downward-
expanding chip-parts, all the way down to the terminal Nand gates from which all chips are

made. This laborious drill-down can be averted, using built-in chips, as we'll explain shortly.

HDL is a declarative language: HDL programs can be viewed as textual specifications of
chip diagrams. For each chip chipName that appears in the diagram, the programmer writes a
chipName(...) statement in the HDL program's PARTS section. Since the language is designed
to describe connections rather than processes, the order of the PARTS statements is
insignificant: As long as the chip-parts are connected correctly, the chip will function as
stated. The fact that HDL statements can be reordered without effecting the chip's behavior
may look odd to readers who are used to conventional programming. Remember: HDL is not

a programming language; It's a specification language.

White space, comments, case conventions: HDL is case-sensitive: foo and Foo represent

two different things. HDL keywords are written in uppercase letters. Space characters,

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 2



newline characters, and comments are ignored. The following comment formats are

supported:
// Comment to end of line
/* Comment until closing */

/** API documentation comment */

Pins: HDL programs feature three types of pins: input pins, output pins, and internal pins.
The latter pins serve to connect outputs of chip-parts to inputs of other chip-parts. Pins are
assumed by default to be single-bit, carrying @ or 1 values. Multi-bit "bus" pins can also be

declared and used, as described later in this appendix.

Names of chips and pins may be any sequence of letters and digits not starting with a digit
(some hardware simulators disallow using hyphens). By convention, chip and pin names start
with a capital letter and a lowercase letter, respectively. For readability, names can include
uppercase letters, e.g. FullAdder and xorResult. HDL programs are stored in .hd1 files. The
name of the chip declared in the HDL statement "CHIP Xxx" must be identical to the prefix of

the file name Xxx.hdl.

Program structure: An HDL program consists of an interface and an implementation. The
interface consists of the chip's API documentation, chip name, and names of its input and
output pins. The implementation consists of the statements below the PARTS keyword. The

overall program structure is as follows:

/** API documentation: what the chip does. */
CHIP ChipName {
IN inputPinl, inputPin2, ... ;
OUT outputPinl, outputPin2, ... ;
PARTS:
// Here comes the implementation.

}

Parts: The chip implementation is a series of chip-part statements, as follows:

PARTS:
chipPart(connection, ... , connection);
chipPart(connection, ... , connection);

Each connection is specified using the binding pinl = pin2, where pinl and pin2 are input,
output, or internal pin names. These connections can be visualized as "wires" that the HDL
programmer creates and names, as needed. For each "wire" connecting chipPart1 and

chipPart2 there is an internal pin that appears twice in the HDL program: once as a "sink" in

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2



some chipPart1(...) statement, and once as a "source" in some other chipPart2(...) statement.

For example, consider the following statements:

chipPartl(..., out=v,...); // out of chipPart1 feeds the internal pin v
chipPart2(..., in=v, ...); /I 'in of chipPart2 is fed from v

chipPart3(..., inl1=v, ..., in2 =v,...); //inl and in2 of chipPart3 are also fed from v

Pins have fan-in 1 and unlimited fan-out. This means that a pin can be fed from a single
source only, yet it can feed (through multiple connections) one or more pins, in one or more
chip-parts. In the above example, the internal pin v simultaneously feeds three inputs. This is

the HDL equivalent of forks in chip diagrams.

The meaning of a = a: Many chips in the Hack platform use the same pin names. As shown
in figure A1.1, this leads to statements like Xor (a=a, b=b, out=neq1). The first two
connections feed the a and b inputs of the implemented chip (Eq3) into the a and b inputs of
Xor chip-part. The third connection feeds the out output of the Xor chip-part to the internal pin
neql. Here is a simple rule that helps sort things out: In every chip-part statement, the left side
of each "=" binding always denotes an input or output pin of the chip-part, and the right side

always denotes an input, output, or internal pin of the implemented chip.

A2.2 Multi-bit busses
Each input, output, or internal pin in an HDL program may be either a single bit value, which

is the default, or a multi-bit value, referred to as "bus".

Input and output bus pins: The bit-widths of these pins are specified when they are declared
in the chip's IN and oUT statements. The syntax is x[7], where x and n declare the pin's name

and bit-width, respectively.

Internal bus pins: The bit-widths of internal pins are deduced implicitly, from the bindings

in which they are declared, as follows:

chipParti(..., x[i] =u, ...);

chipPart2(..., x[i..j]l=v, ...);

Where x is an input or output pin of the chip-part. The first binding defines u to be a single-bit
internal pin, and sets its value to x[i]. The second binding defines v to be an internal bus-pin
of width j-i+1 bits, and sets its value to the bits indexed i to j (inclusive) of bus-pin x.

Unlike input and output pins, internal pins (like u and v) may not be subscripted. For

example, u[i] is not allowed.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 4



True / false busses: The constants true (1) and false (@) may also be used to define busses.
For example, suppose that x is an 8-bit bus-pin, and consider the statement:

chipPart(..., x[0..2] = true, ..., X[6..7] = true, ...);
This definition sets x to the value 11000111. Note that unaffected bits are set by default to

false (). Figure A2.2 gives another example.

// Sets out = Not(in), bitwise
CHIP Not8 {

IN in[8];

OUT out[8];
Assumption: six is an internal pin,

} containing the value 110.
CHIP Foo { . . .
out1 is an internal pin, created by the Not8
PARTS chip-part statement.
e Below: the resulting contents of the
Not8(in[@..1] = true, in input of Not8, and of out1.
in[3..5] = six,
in[7] = true, 7 6 S 4 3 2 1 0
out[3..7] = outl, in:[1]ef1]1]e|e]1]1]
)s
4 3 2 1
} outi:| 6 [1 e |e | 1]

Figure A2.2: Busses in action (example).

A2.3 Built-In Chips

Chips can have either a "native" implementation, written in HDL, or a "built-in"
implementation, supplied by some executable module written in a high-level programming
language. Since the Nand to Tetris hardware simulator was written in Java, it was convenient
to realize the built-in chips as Java classes. Thus, before building, say, a Mux chip in HDL, the
user can load a built-in Mux chip into the hardware simulator, and experiment with it. The
behavior of the built-in Mux chip is supplied by a Java class file named Mux. class.

The Hack computer is made from about 30 generic chips, listed in appendix 4. Two of
these chips, Nand and DFF, are considered "given", or "primitive", akin to axioms in logic. The
hardware simulator realizes "given chips" by invoking their built-in implementations.
Therefore, In Nand to Tetris, Nand and DFF can be used without building them in HDL.

Projects 1,2,3 and 5 evolve around building HDL implementations of the remaining
chips listed in appendix 4. All these chips, except for the CPU and the Computer chips, also
have built-in implementations. This was done in order to facilitate behavioral simulation, as

explained in chapter 1.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 5



The built-in chips — a library of about 30 .class files — are supplied in the directory
tools/builtInChips in your computer. Built-in chips have HDL interfaces identical to those
of regular HDL chips. Therefore, each .class file is accompanied with a corresponding .hd1
file that provides the built-in chip interface. Figure A2.3 shows a typical HDL definition of a
built-in chip.

/** 16-bit And gate, implemented as a built-in chip. */
CHIP Andl6 {
IN a[16], b[16];
OUT out[16];
BUILTIN Andl6;

} Implemented by
Ltools/builtInChips/Anle. class

Figure A2.3: Built-in chip definition example.

It's important to remember that the hardware simulator is a general-purpose tool, whereas the
Hack computer built in Nand to Tetris is a specific hardware platform. The hardware
simulator can be used for building gates, chips, and platforms that have nothing to do with
Hack. Therefore, when discussing the notion of built-in chips, it helps to broaden our
perspective and describe their general utility for supporting any possible hardware

construction project. In general then, built-in chips provide the following services:

Foundation: Built-in chips can provide supplied implementations of chips that are considered

"given", or "primitive". For example, in the Hack computer, Nand and DFF are given.
g p p p g

Efficiency: Some chips, like RAM units, consist of numerous lower-level chips. When we
use such chips as chip-parts, the hardware simulator has to evaluate them. This is done by
evaluating, recursively, all the lower-level chips from which they are made. This results in
slow and inefficient simulation. The use of built-in chip-parts instead of regular, HDL-based

chips speeds up the simulation considerably.

Unit testing: HDL programs use chip-parts abstractly, without paying any attention to their
implementation. Therefore, when building a new chip, it is always recommended to use built-

in chip-parts. This practice improves efficiency and minimizes errors.

Visualization: If the designer wants to allow users to "see" how chips work, and perhaps
change the internal state of the simulated chip interactively, he or she can supply a built-in
chip implementation that features a GUI. This GUI will be displayed whenever the built-in

chip is loaded into the simulator, or invoked as a chip-part. Except for these visual side

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 6



effects, GUI-empowered chips behave, and can be used, just like any other chip. Section A.8

provides more details about GUI-empowered chips.

Extension: If you wish to implement a new input/output device, or create a new hardware
platform altogether (other than Hack), you can support these constructions with built-in chips.

For more information about developing additional or new functionality, see chapter 13.

A2.4 Sequential chips

Chips can be either combinational, or sequential. Combinational chips are time-independent:
when the value of some of their inputs changes, the chip's outputs change (if they change)
instantaneously. Sequential chips are time-dependent, also called c/locked: When a user or a
test script changes the inputs of a sequential chip, the chip outputs may change only at the
beginning of the next time unit, also called cycle. The hardware simulator affects the

progression of time units using a simulated clock.

The clock: The simulator's 2-phase clock emits an infinite series of values denoted o, 0+, 1,
1+, 2, 2+, 3, 3+, and so on. The progression of this discrete time series is controlled by two
simulator commands called tick and tock. A tick moves the clock value from ¢ to ¢+, and a
tock from 7+ to ¢+ 1, bringing upon the next time unit. The real time that elapsed during this
period is completely irrelevant for simulation purposes, since the simulated time can be fully
controlled by the user, or by a test script, as follows.

First, whenever a sequential chip is loaded into the simulator, the GUI enables a
clock-shaped button (dimmed when simulating combinational chips). One click on this button
(a tick) ends the first phase of the clock cycle, and a subsequent click (a tock) ends the
second phase of the cycle, bringing on the first phase of the next cycle, and so on.
Alternatively, one can run the clock from a test script. For example, the sequence of scripting
commands "repeat n {tick, tock, output;} instructs the simulator to advance the clock »
time units, and to print some values in the process. Appendix 3 documents the Test
Description Language (TDL) that features these commands.

The two-phased time units generated by the clock regulate the operations of all the
sequential chip-parts in the implemented chip. During the first phase of the time unit (tick),
the inputs of each sequential chip-part affect the chip’s internal state, according to the chip
logic. During the second phase of the time unit (tock), the chip outputs are set to the new
values. Hence, if we look at a sequential chip “from the outside,” we see that its output pins
stabilize to new values only at tocks — a the point of transition between two consecutive time

units.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 7



We reiterate that combinational chips are completely oblivious to the clock. In Nand
to Tetris, all the logic gates and chips built in chapters 1-2, up to, and including the ALU, are
combinational. All the registers and memory units built in chapter 3 are sequential. By
default, chips are combinational; a chip can become sequential explicitly, or implicitly, as

follows.

Sequential, built-in chips: A built-in chip can declare its dependence on the clock explicitly,

using the statement:

CLOCKED pin, pin, ..., pin;
Where each pin is one of the chip's input or output pins. The inclusion of an input pin x in the
CLOCKED list stipulates that changes to x should affect the chip’s outputs only at the beginning
of the next time unit. The inclusion of an output pin x in the CLOCKED list stipulates that
changes in any of the chip’s inputs should affect x only at the beginning of the next time unit.
Figure A2.4 presents the definition of the most basic, built-in, sequential chip in the Hack

platform — the DFF.

/** D-Flip-Flop gate (DFF):

out[t] = in[#- 1] where ¢ is the current cycle, or time-unit. */

CHIP DFF {
IN in; Implemented by
OUT out; tools/builtInChips/DFF.class
BUILTIN DFF;
CLOCKED in;

}
X/The in input is explicitly clocked
N

Figure A2.4: DFF definition.

It is quite possible that only some of the input or output pins of a chip are declared as clocked.
In that case, changes in the non-clocked input pins affect the non-clocked output pins
instantaneously. That's how the address pins are implemented in RAM units: the addressing
logic is combinational, and independent of the clock.

It is also possible to declare the CLOCKED keyword with an empty list of pins. This
statement stipulates that the chip may change its internal state depending on the clock, but its

input-output behavior will be combinational, independent of the clock.

Sequential, regular chips: The CLOCKED property can be defined explicitly only in built-in
chips. How then does the simulator know that a given chip-part is sequential? If the chip is
not built-in, then it is said to be clocked when one or more of its chip-parts is clocked. The

clocked property is checked recursively, all the way down the chip hierarchy, where a built-in

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 8



chip may be explicitly clocked. If such a chip is found, it renders every chip that depends on it
(up the hierarchy) "clocked". Therefore, in the Hack computer, all the chips that include one
or more DFF chip-parts, either directly or indirectly, are clocked.

We see that if a chip is not built-in, there is no way to tell from its HDL code weather
it is sequential, or not. As a best practice advice, the chip architect should provide this

information in the chip APIL.

Feedback loops: If the input of a chip feeds from one of the chip's outputs, either directly, or
through a (possibly long) path of dependencies, we say that the chip contains a feedback loop.

For example, consider the following two chip-part statements:
Not(in=loopl, out=1oopl) //Invalid feedback loop
DFF (in=1loop2, out=1loop2) // Valid feedback loop

In both examples, an internal pin (loop1 or loop2) attempts to feed the chip’s input from its
output, creating a feedback loop. The difference between the two examples is that Not is a
combinational chip, whereas DFF is sequential. In the Not example, loop1 creates an
instantaneous and uncontrolled dependency between in and out, sometimes called data race.
In contrast, in the DFF case, the in-out dependency created by loop2 is delayed by the clock,
since the in input of the DFF is declared clocked. Therefore, out(#) is not a function of in(z),
but rather of in(z-1).

When the simulator evaluates a chip, it checks recursively if its various connections
entail feedback loops. For each loop, the simulator checks if the loop goes through a clocked
pin, somewhere along the way. If so, the loop is allowed. Otherwise, the simulator stops
processing and issues an error message. This is done in order to prevent uncontrolled data

races.

A2.5 Visualizing chips
Built-in chips may be “GUI-empowered.” These chips feature visual side effects, designed to
animate some of the chip operations. When the simulator evaluates a GUI-empowered chip-
part, it displays a graphical image on the screen. Using this image, which may include
interactive elements, the user can inspect the chip's current state, or change it. The permissible
GUI-empowered actions are determined, and made possible, by the developer of the built-in
chip implementation.

The present version of the hardware simulator features the following GUI-empowered,

built-in chips:

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 9



ALU: Displays the Hack ALU’s inputs, output, and the presently computed function.

Registers (ARegister, DRegister, and PC): Displays the register's contents, which may be

modified by the user.

RAM chips: Displays a scrollable, array-like image that shows the contents of all the memory
locations, which may be modified by the user. If the contents of a memory location changes

during the simulation, the respective entry in the GUI changes as well.

ROM chip (ROM32K): Same array-like image as that of RAM chips, plus an icon that enables
loading a machine language program from an external text file (The ROM32K chip serves as the

instruction memory of the Hack computer).

Screen chip: Displays a 256 rows by 512 columns window that simulates the physical screen.
If, during a simulation, one or more bits in the RAM-resident screen memory map change, the
respective pixels in the screen GUI change as well. This continuous refresh loop is embedded

in the simulator implementation.

Keyboard chip: Displays a keyboard icon. Clicking this icon connects the real keyboard of
your PC to the simulated chip. From this point on, every key pressed on the real keyboard is
intercepted by the simulated chip, and its binary code appears in the RAM-resident keyboard
memory map. If the user moves the mouse focus to another area in the simulator GUI, the
control of the keyboard is restored to the real computer.

Figure A2.5 presents a (rather nonsensible) chip that uses three GUI empowered chip-
parts. Figure A2.6 shows how the simulator handles this chip.

// Demo of GUI-empowered chips.
// The logic of this chip is meaningless, and is used merely to force
// the simulator to display the GUI effects of its built-in chip-parts.
CHIP GUIDemo {
IN in[16], load, address[15];
OUT out[16];
PARTS:
RAM16K (in=in, load=load, address=address[@..13], out=a);
Screen(in=in, load=1load, address=address[0..12], out=b);
Keyboard(out=c);
}

Figure A2.5: A chip that activates some GUI-empowered chip-parts.

The GuIDemo chip logic feeds its in input into two destinations: register number address in the
RAM16K chip-part, and register number address in the Screen chip-part. In addition, the chip

logic feeds the out values of its three chip-parts to the "dead-end" internal pins a, b, and c.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 10



These meaningless connections are designed for one purpose only: Illustrating how the

simulator deals with built-in, GUI-empowered chip-parts.

£ Hardware Simulator {(1.4b3) - G:\examples'GUIDemo.hd|

File ‘iew Run Help

=1o) x|

-

>>PuHB DY

Slow

‘ChipName: |GuIDemo Clocked)

Time. |1

—

Fast

|

Input pins

Output pins

Narme Value

Name: I Value

inpé)

out(s) [

of

load

?

addressis)

3. The user

changes some
input pins

2. GUI of built-in
Screen chip

at:

Form: View:
| [pecimal >|[screen =]

4. Visible
side effects

Animate:
Program flow

RAM 16K:

/D&

HDL

Internal pins.

s Demo of some BUILT-IN,
7 GUI-empowered chips.
CHIP GUIDeno {

IN in(é), load, addressish

OUT outpél;

PARTS:

RAMI6K (in=in, load=load,
address=addressp.13),
out=a);

Screen (in=in, load=load,
address=address[.13,
out=h);

Keyboard (out=c);

Name Value

5008 / ofaf

5010

5011

alté]
bus)

5012

5013

cué)

o

5014

1. HDL code,
happens to include
some built-in GUI-

empowered chips

olololtlole

5015

=l

2. GUI of built-in

Keyboard chip

2. GUI of built-in
RAM1 6K chip

TR

Figure A2.6: GUI-empowered chips demo. Since the loaded HDL program uses GUI-
empowered chip-parts (step 1), the simulator renders their respective GUI images (step
2). When the user changes the values of the chip input pins (step 3), the simulator
reflects these changes in the respective GUISs (step 4).

Note how the changes effected by the user (step 3) impact the screen (step 4). The circled
horizontal line shown on the screen is the visual side effect of storing -1 in memory location
5012. Since the 16-bit two's complement binary code of -1 is 1111111111111111, the
computer draws 16 pixels starting at column 320 of row 156, which happen to be the screen
coordinates associated with RAM address 5012. The mapping of memory addresses on

(row,column) screen coordinates is specified in chapter 4, section 4.2.5.

A2.6 HDL Survival Guide
The section provides practical tips about how to develop chips in HDL, using the supplied
hardware simulator. The tips are listed in no particular order. We recommend reading this

section once, beginning to end, and then consulting it as needed.

Chip implementation order: Your nand2tetris/projects directory includes 13
subdirectories, named 01, 02, ..., 13 (corresponding to the relevant chapter numbers). The

hardware project directories are @1, 82, 03, and 5. Each hardware project directory contains a

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 11



set of supplied HDL "stub files", one for each chip that you have to build. It's important to
understand that the supplied HDL files contain no implementations; building these
implementations is what the project is all about. If you will not build these chips in the order
in which they are described in the book, you may run into difficulties. For example, suppose
that you start project 1 by building the Xor chip. If your Xor.hd1 implementation will include,
say, And and Or chip-parts, and you have not yet implemented And.hd1 and Or.hdl, your
Xor.hdl program will not work even if its implementation is perfectly correct.

Note however that if the project directory included no And.hd1 and or.hd1 files at all,
your Xor.hdl program will work properly. The hardware simulator, which is a Java program,
features built-in implementations of all the chips necessary to build the Hack computer (with
the exception of the CPU and Computer chips). When the simulator evaluates a chip-part, say
And, it looks for an And.hd1 file in the current directory. At this point there are three
possibilities:

e No HDL file is found. In this case, the built-in implementation of the chip kicks in,
covering for the missing HDL implementation.

e A stub HDL file is found. The simulator tries to execute it. Failing to find an
implementation, the execution fails.

e An HDL file is found, with an HDL implementation. The simulator executes it,

reporting errors, if any, to the best of its ability.

Best practice advice: You can do one of two things. Try to implement the chips in the order
presented in the book, and in the project descriptions. Since the chips are discussed "bottom-
up", from basic chips to more complex ones, you will encounter no chip order implementation
troubles. Provided, of course, that you will complete each chip implementation correctly
before moving on to implement the next one.

A recommended alternative is to create a subdirectory named, say, "stubs", and move
all the supplied .hd1 stub files into it. You can then move the stub file that you want to work
on into your working directory, one by one. When you are done implementing a chip
successfully, move it into, say, a "completed" subdirectory. This practice forces the simulator
to always use built-in chips, since the working directory includes only the .hd1 file that you

are working on (as well as the supplied .tst and .cmp files).

HDL files and test scripts: The .hd1 file that you are working on and its associated .tst test

script file must be located in the same directory. Each supplied test script starts with a "load"

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 12



command that loads the .hd1 file that it is supposed to test. The simulator always looks for
this file in the current directory.

In principle, the simulator's File menu allows the user to load, interactively, both an
.hd1 file and a .tst script file. This can create potential problems. For example, you can load
the .hd1 file that you are working on into the simulator, and then load a test script from
another directory. When you'll execute the test script, it may well load a different version of
the HDL program into the simulator (possibly, a stub file). When in doubt, inspect the pane
named "hd1" in the simulator GUI, to check which HDL code is presently loaded. Best
practice advice: Use the simulator's File menu to load either an .hd1 file, or a . tst file, but

not both.

Testing chips in isolation: At some point you may become convinced that your chip is
correct, even though it is still failing the test. Indeed, it is quite possible that the chip is
perfectly implemented, but one of its chip-parts is not. Also, a chip that passed its test
successfully may fail when used as a chip-part by another chip. One of the biggest inherent
limitations of hardware design is that test scripts — especially those that test complex chips —
simply cannot guarantee that the tested chip will operate perfectly in all circumstances.

The good news is that you can always diagnose which chip-part is causing the
problem. Create a test subdirectory and copy into it only the three .hd1, .tst, and .out files
related to the chip that you are presently building. If your chip implementation passes its test
in this subdirectory as-is (letting the simulator use the default built-in chip-parts), there must
be a problem with one of your chip-parts implementations, i.e. with one of the chips that
you've built earlier in this project. Copy the other chips into this test directory, one by one,

and repeat the test until you find the problematic chip.

HDL syntax errors: The hardware simulator displays errors on the bottom status bar. On
computers with small screens these messages are sometimes off the bottom of the screen, and
are not visible. If you load an HDL program and nothing shows up in the "hdl" pane, and no
error message is seen, this may be the problem. Your computer should have a way to move
the window, using the keyboard. For example, on Windows use Alt+Space, M, and the arrow

keys.

Unconnected pins: The hardware simulator does not consider unconnected pins to be errors.
By default, it sets any unconnected input or output pin to false (binary value @). This can

cause mysterious errors in your chip implementations.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 13



If an output pin of your chip is always @, make sure that it is properly connected to
some other pin in your program. In particular, double-check the names of the internal pins
("wires") that feed this pin, either directly or indirectly. Typographic errors are particularly
hazardous here, since the simulator doesn't throw errors on disconnected wires. For example,
consider the statement "Foo(..., sum=sun)", where the sum output of Foo is supposed to pipe
it's value to an internal pin. Indeed, the simulator will happily create an internal pin named
sun. Now, if sum's value was supposed to feed the output pin of the implemented chip, or the
input pin of some other chip-part, this pin will in fact be @, always, since nothing will be piped
from Foo onward.

To recap, if an output pin is always e, or if one of the chip-parts does not appear to be
working correctly, check the spelling of all the relevant pin names, and verify that all the

input pins of the chip-part are connected.

Customized testing: For every chip.hd1 file that you have to complete, your project
directory also includes a supplied test script, named chip.tst, and a compare file,
named chip.cmp. Once your chip starts generating outputs, your directory will also include an
output file named chip.out. If your chip fails the test script, don't forget to consult
the .out file. Inspect the listed output values, and seek clues to the failure. If for some reason
you can't see the output file in the simulator GUI, you can always inspect it using a text
editor.

If you want, you can run some tests of your own. Copy the supplied test script to,
say, MyTestChip.tst, and modify the script commands in order to gain more insight into your
chip's behavior. Start by changing the name of the output file in the output-file line, and
deleting the compare-to line. This will cause the test to always run to completion (by default,
the simulation stops when an output line disagrees with the corresponding line in the compare
file). Consider modifying the output-1list line, to show the outputs of your internal pins.

Appendix 3 documents the Test Scripting Language (TDL) that features all these commands.

Bit numbering and bus syntax: Bits are numbered from right to left, starting with 0. Bit i in
a bus pin represents the i-th power of 2. For example, when we say sel=110, we mean that

sel[2]=1, sel[1]=1 and sel[@]=0.

Sub-bussing (indexing) internal pins: Is not permitted. The only bus-pins that can be
indexed are the input and output pins of the implemented chip, or the input and output pins of
its chip-parts. However, there is a workaround for sub-bussing internal bus-pins. To motivate

the workaround, here is an example that doesn't work:

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 14



CHIP Foo {
IN in[16];
OUT out;
PARTS:
Notl6 (in=in, out=notIn);
Or8Way (in=notIn[4..11], out=out); // Error: internal bus cannot be indexed

}

Possible fix, using the workaround:
Notl6 (in=in, out[4..11]=notIn);

Or8Way (in=notIn, out=out); // Works!

Multiple outputs: Sometimes you need to split the multi-bit value of a bus-pin into two
busses. This can be done by using multiple "out=" bindings. For example:

CHIP Foo {
IN in[16];
OUT out[8];
PARTS:
Notl6  (in=in, out[@..7]=low8, out[8..15]=high8); // Splitting the out value
Bar8Bit (a=low8, b=high8, out=out)

}
Sometimes you may want to output a value, and also use it for further computations. This can

be done as follows:

CHIP Foo {
IN a, b, c;
OUT outl, out2;
PARTS:
Bar (a=a, b=b, out=x, out=outl); //Bar'soutput feeds the outl output of Foo
Baz (a=x, b=c, out=out2); /I A copy of Bar's output also feeds Baz's a input

}

Chip-parts "auto complete" (sort of...): The signatures of all the chips mentioned in the
book are listed in appendix 4, which also has a web-based version (in www.nand2tetris.org).
To use a chip-part in a chip implementation, copy the chip signature from this document into

your HDL program, then fill-in the missing bindings. This practice saves time and minimizes

typing errors.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 2 15



