
Project 1: Elementary Logic Gates

A typical computer architecture is based on a set of elementary logic gates like And, Or, Mux, etc.,

as well as on their bitwise versions And16, Or16, Mux16, etc. (assuming a 16-bit machine). In this

project you will build a typical set of basic logic gates. These gates form the elementary building

blocks from which you will build the computer’s CPU and RAM chips in later projects.

Below we describe the tools, resources, and implementation tips needed for completing project 1.

Objective

Build the following chips (we use the terms chip and gate interchangeably):

Nand (given)

Not

And

Or

Xor

Mux

DMux

Not16

And16

Or16

Mux16

Or8Way

Mux4Way16

Mux8Way16

DMux4Way

DMux8Way

Since Nand is considered primitive, there is no need to implement it.

Files: For each chip Xxx in the list, we provide a skeletal Xxx.hdl program, also called stub file, with

a missing PARTS section. In addition, for each chip we provide an Xxx.tst script that tells the

hardware simulator how to test the chip, along with an Xxx.cmp compare file containing the

correct outputs that the supplied test is expected to generate. Your task is writing, and testing, the

chip implementations (specifically: Completing the supplied Xxx.hdl files).

Contract: For each chip in the list, your chip implementation (modified Xxx.hdl file), tested by the

supplied Xxx.tst file, must generate the outputs listed in the supplied Xxx.cmp file. If the actual

outputs generated by your chip disagree with the desired outputs, the simulator will report error

messages.

www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken



Building the chips

A new online IDE (Integrated Development Environment) was recently launched for learners of

Nand to Tetris courses. Therefore, there are now two options for completing project 1:

If you are using the Nand2Tetris IDE Online (which is recommended), all the Xxx.hdl, Xxx.tst and

Xxx.cmp files are available in your browser memory. To develop and test a particular chip, select

the project / chip from the simulator’s drop-down menus. Your edited HDL code will be saved

automatically. To download the HDL files to your local PC, click the download button. The current

version of all the project’s Xxx.hdl files will be downloaded as one zip file.

Using the desktop Nand2Tetris hardware simulator is also possible. If you’ve downloaded the

Nand to Tetris software suite from www.nand2tetris.org, and extracted it into a folder named

nand2tetris on your computer, the nand2tetris/tools folder contains the desktop version of the

hardware simulator, and the nand2tetris/projects/1 folder contains all the files needed for

completing this project. You can write/edit the HDL code of each Xxx.hdl file using any plain text

editor, and then test your code using the desktop simulator.

HDL documentation: We sometimes use abbreviated notation. For example, the comment

“if (in) out = 1, else out = 0” means: “if (in = 1) then set out to 0, else set out to 1”. Likewise, the

condition “if (a and b)…” means “if (a = 1 and b = 1)…” , etc.

References

HDL Guide

Chips Set API

Tutorials

The tutorials below focus on using the desktop version of the hardware simulator. Tutorials for the

online simulator, the preferred tool for this project, will be available soon. However, you can apply

the principles from these tutorials to perform similar actions in the online simulator (a major

difference is that there is no need to load any files in the online simulator).

Hardware Simulator: Intro

Building and Testing Chips

Script-Based Chip Simulation

Hardware Simulator Tutorial (click slideshow)

Consult each reference / tutorial as needed: There is no need to go through the entire resource.

Implementation Tips

0. Before implementing a chip, it is recommended to experiment with its builtin implementation.

If you are using the online simulator, simply click the builtin toggle; If you are using the desktop

version, load the builtin chip from the tools/builtInChips folder.

www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

https://nand2tetris.github.io/web-ide/chip
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view
https://www.youtube.com/watch?v=FW6Z_Xp2v-c
https://www.youtube.com/watch?v=iSNfqzJUWW4&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=2
https://www.youtube.com/watch?v=d0X0dMMUt1U
https://docs.google.com/presentation/d/15wE9HV0yW9RI90IcQ3wl47BSkU9gdZDr?rtpof=true&authuser=schocken%40gmail.com&usp=drive_fs


1. Each chip can be implemented in more than one way. The simpler the implementation, the

better. As a general rule, strive to use as few chip-parts as possible.

2. Although each chip can be implemented directly from Nand gates only, you can use any other

chip from project 1 as a chip-part, as needed (see the previous tip).

3. There is no need to build “helper chips” of your own design. Your HDL programs should use

only the chips listed in this project.

4. We recommend implementing the chips in the order in which they are listed. If, for some

reason, you don’t complete the HDL implementation of some chip, you can still use it as a

chip-part in other HDL programs. In the online simulator, the chip evaluation process uses

builtin chip implementations, so there is no further ado. If you are using the desktop version,

rename the chip file that you did not implement, or remove it from the project 1 folder. This

will force the desktop simulator to use the chip’s builtin implementation.

5. Each chip can be tested interactively, or using a test script. In the online simulator, simply run

the test script. In the desktop simulator, you must first load the chip’s test script, and then run

it.

www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken


